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ABSTRACT 

Cambarus harti 5 2 state-listed endangered, endemic crayfish found only in three 

counties in mid-west Georgia. Several studies have attempted to characterize the biology and 

ecology of this crayfish, however data regarding the distribution of this rare, endemic crayfish 

remains limited. The International Union for Conservation of nature stated that in order to create 

an effective conservation plan, the known distribution must be expanded. Species distribution 

models are a cost-effective way to identify locations that have similar habitat characteristics to 

those with known populations. One species distribution model, Maximum Entropy (MaxEnt), is 

the preferred approach when modeling species, like C. harti, that only have a few known 

locations. | used MaxEnt to create a predictive, spatial model for C. harti. The MaxEnt model 

was developed using 14 C. harti occurrence locations and five environmental layers (distance to 

water, soils, geology, landcover, and slope) for six counties in West Central Georgia. Using a 2km 

buffer for background points the model produced a receiver operating characteristic curve (ROC) 

with an area under the curve (AUC) value of 0.97. The high AUC value correlates with the high 

discriminatory power of the model. The five environmental layers were weighted differently 

starting with the most important; distance to water (35.4%), soil (29.1%), landcover (14.8%), 

geology (14.3%), and slope (6.3%). The model's results covered 6110 km? in Georgia with 

probabilities of C. harti occurrence ranging from: 0%-100% [(0%-10%) 4432 km?, (10%-20%) 

622km?, (20%-30%) 371 km?, (30%-40%) 214 km?, (40%-50%) 150 km?, (50%-60%) 137 km?, (60%- 

70%) 122 km?, (70%-80%) 30 km?, (80%-90%) 30 km?, (90%-100%) 2 km?]. The MaxEnt model was 

evaluated through two different ground truthing methods. The first approach examined the 

model’s overall accuracy by randomly sampling for crayfish at 30 sites across three model  
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predicted probability ranges (0%-20%, 40%-60%, 80%-100%). The second method evaluated the 

model output at finer resolutions by comparing probabilities of known C. harti locations to sites 

within 183m of known locations but without crayfish. The first approach yielded no verified C. 

harti locations within any of the sampling brackets. The second method confirmed that the 

model was ineffective at identifying C. harti habitat on large spatial scales (i.e. locally). 

Review of the environmental data layers used to create the model uncovered errors in 

the underlying data. For example, the USGS National Hydrology Dataset was a large source of 

error, with many streams improperly mapped. This data set was used to create the distance to 

water grid. It is clear that data resolution, accuracy and resolution have not advanced to the 

point where these models can justifiably be used to map the potential habitat of this endemic 

burrowing crayfish. Cambarus harti is likely just one of many species this model is inadequate 

for; models for amphibians and other species that rely on ground water or surface water depicted 

by the USGS National Hydrology Dataset would lack adequate data. A high resolution (10m) 

groundwater layer needs to be obtained in order to more accurately model burrowing crayfish 

habitat. 
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Introduction 

Biodiversity, the diversity of genes, species, and habitats within ecosystems, is arguably 

the most important driver of ecosystem functions (Zavaleta, 2010). A healthy diverse ecosystem 

is able to provide services such as clean air and water along with aiding the removal of pollutants 

(Schlapfer, 1999). One of the leading threats to biodiversity is the expanding anthropogenic 

degradation to the environment. Threats such as sediment loading, pollution, and sprawling 

cities destroy natural habitat (Singh, 2002). These anthropogenic effects have led to an increase 

in species extinction rates around the globe, and placed other species in peril (Singh, 2002). Often 

overlooked are the less charismatic organisms, such as: worms, ants, microbes, and crayfish, 

among other macroinvertebrates. These small organisms have been shown to play a critical role 

in ecosystems where they process organic matter that facilitates nutrient cycling (Covich et al. 

1999). Despite their small size, these invertebrates (e.g. crayfish, snails and nymphs) are critically 

important for maintaining healthy aquatic ecosystems because they often occur in high densities 

(Wallace & Webster, 1996). 

On a global scale freshwater ecosystems have suffered the largest percent loss of 

biodiversity, making a clear case for the conservation of freshwater habitats (Richman et al., 

2015). Even though freshwater ecosystems only occupy around 1% of the Earth’s surface area 

they support around 10% of all known species (Strayer & Dudgeon, 2010). Among freshwater 

species, crayfish are highly imperiled. Nearly 32% of the approximately 590 freshwater species 

worldwide are at risk of extinction (Richman et al., 2015).  
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In the U.S., only 52% of the 363 identified crayfish species are listed as stable; the other 

48% are threatened, endangered or possibly extinct (Taylor et al., 2007). The southeastern 

United States is a hotspot of freshwater biodiversity (Master et al. 1998, Georgia DNR - Wildlife 

Resources Division, 2017) particularly crayfish diversity. Georgia is home to 68 native crayfishes 

and 3 non-native species (Skelton, 2010, Crayfish of U.S., 2017). Of the 68 native species, a third 

of Georgia's crayfish species are at risk of extinction (Skelton, 2010, Department Of Natural 

Resources Division, 2017) . Some species are at risk due to their low population sizes and their 

limited range (Skelton, 2010, Department Of Natural Resources Division, 2017). 

Cambarus harti, the Piedmont Blue Burrower, is state-listed endangered, endemic 

crayfish species with a distribution limited to areas within and near Meriwether County in West 

Central Georgia (Keller et al., 2011). Cambarus harti is often found in forested wetland habitats 

with shallow groundwater (Keller et al., 2011, Helms et al., 2013, Gilmer, 2014). These scientific 

studies are based on a few observations that had relatively small population sizes and a limited 

number of locations. Studies of other primary burrowing crayfish suggest that crayfish must be 

able to connect with groundwater (Hobbs, 1981, Skelton, 2010, Keller et al., 2011). Crayfish have 

gills in their carapace that must be damp in order for them to respire (Tarr, 1884, Hasiotis, 1993, 

Skelton et al., 2002, Loughman, 2010). Many primary burrowers live near streams (Tarr, 1884, 

Hobbs, 1981,), presumably because the clay soils and impermeable geologic layers elevate 

groundwater near the ground surface. Hobbs, (1981) observed that C. harti was found in 

locations where the terrestrial habitats transitioned into flood plains. 

Hobbs (1981) originally described this species as a primary burrower that inhabits 

underground tunnels connected to the groundwater. This species was commonly found near  



www.manaraa.com

springs and seeps (Hobbs, 1981). Cambarus harti excavates complex sets of tunnels. Some 

tunnels run horizontal into chambers while others are oriented vertical. Hobbs (1981) 

hypothesized that the chambers were developed to provide refuges during fluctuations in the 

groundwater. The burrow openings are often marked with chimneys that are typically 10 to 

15cm in height (Helms et al, 2013). Hobbs (1981) also noted that C. harti retreated down to the 

deepest chamber when an individual's burrow was being excavated. This behavior made the 

retrieval of the species particularly difficult (Hobbs, 1981). Cambarus harti was described as blue 

in color. The fourth pair of legs of the crayfish, pereiopod, include simple acute hooked ends 

(Hobbs, 1981). Hobbs (1981) describes their first set of pleopods, as leg like features attached to 

the abdomen, extending to the third set of pereiopods. He also noted that both pleopods meet 

flat against each other with acute tips and there is no sign of a notch on the pleopod on the 

ventral side. 

The State of Georgia, as well as the IUCN, list C. harti as endangered due to its narrow 

range and small population size (Cordeiro et al., 2010, Skelton, 2010). These evaluations should 

be considered preliminary, because they are based on limited, and in some cases, historical data. 

For example, the IUCN’s information is limited to 2 populations and 16 specimens (Cordeiro et 

al., 2010). In order to determine adequate conservation strategies, the IUCN stresses that 

scientists must locate more populations. Although several C. harti populations have recently 

been discovered (Skelton, 2002, Keller et al, 2011), conservation planning for C. harti depends on 

the identification of new populations and the collection of additional ecological data. 

The development of species distribution models (SDM) has provided conservationists and 

environmental scientists a suite of new tools that can be used to identify potential habitats for  
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species, particularly ones with specific niche requirements. SDMs are valuable because they 

predict the probability of a species’ occurrence across the geographic landscape (Phillips et al., 

2005). Most SDMs predict the likelihood of a species’ occurrence based on a relationship 

between known locations and user defined habitat related environmental data in the form of 

spatial layers such as soils, land cover, and climate (Guisan & Thuiller, 2005). There are two main 

model types. Presence-absence models require both occurrence and absence locations, while 

presence-only models require known locations only. Although there are a number of different 

species distribution model approaches (DOMAIN, MARS, GAM, GBM, GLM, etc.), only maximum- 

entropy modeling (MaxEnt) has proven effective for endemic species with only a few known 

populations (Wisz et al., 2008). 

MaxEnt is a maximum entropy model with thresholds (Wisz et al., 2008) that can predict 

a species’ distribution based on environmental covariates. The model uses prior data, occurrence 

locations and environmental layers, to determine the constraints (i.e. mean, variance) applied to 

the model output. Maximum entropy is so named because there are many different models that 

could fulfill the input constraints. When creating the final model output MaxEnt starts as a 

perfectly uniform probability distribution in geographic space, then it applies the constraints 

forcing the model away from this uniform distribution to create the final model (Elith et al., 2011). 

MaxEnt can be used to analyze categorical and continuous data types. These forms of data can 

be modeled using; linear, quadratic, product, threshold, hinge, and binary associations (Elith et 

al.,, 2011). In order to produce an accurate model, MaxEnt uses (L-1) regularization to improve 

machine learning (Hastie et al., 2009, Elith et al., 2011). This technique is commonly used when  
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multiple factors (i.e. environmental layers) describe one data point, it softens the distribution 

pushing weight onto more explanatory factors (Hastie et al., 2009, Elith et al., 2011). 

In order to create an effective MaxEnt model one must understand how to create and 

revise the model to remove inaccuracies and adjust parameters to assure a good model fit 

(Phillips et al., 2004, Phillips et al., 2005, Elith et al., 2011). The precision of the model is fully 

dependent on the resolution of your spatial data layers. MaxEnt uses prior data collected about 

the species’ location and can be used in applications without absence locations. In the past 

MaxEnt has been successfully applied to rare and endemic species such as the endangered dwarf 

wedgemussel and endemic birds in temperate forests of Southern Chile (Wilson et al., 2011, 

Moreno et al., 2011, Campbell & Hilderbrand, 2016). However, to this author’s knowledge, it has 

only been used to model the distribution of two burrowing crayfish species (Rhoden et al., 2017). 

MaxEnt, with its published use on burrowing crayfish (Rhoden et al., 2017), seems the 

appropriate model for C. harti. Effective conservation of C. harti depends on a more thorough 

understanding of this species’ distribution. My goal is to use MaxEnt to develop a spatial model 

that predicts potential habitat and can be used to expand the known distribution of this species. 

An effective SDM would facilitate research about C. harti needed for the development of an 

effective conservation plan. Only with additional data can scientists help protect this endangered 

species. 

Materials and Methods 

Presence data and environmental variables 

Species distribution models rely on spatially explicit data that could be useful for accurately 

predicting a species’ distribution. The MaxEnt modeling application requires a CSV file containing  
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the latitude and longitude of known occurrences (i.e, confirmed locations) and an ASCII grid for 

each environmental layer (e.g. soils). Using ArcGIS 10.4, all environmental rasters were set to 

the same extent (Fig. 1), cell size (10m), and projection (NAD 1983 Georgia Statewide Lambert) 

in order to be included in the MaxEnt model. Cell size was manipulated by converting all layers 

to match the finest resolution (10m). This approach was an attempt to retain all the data instead 

of aggregating pixels to a larger pixel size resulting in a loss of data. The environmental layers 

soil, geology, landcover, slope, and distance to water were included in the model (Table 1). Sail, 

geology, and landcover were included to describe the burrowing habitat while slope, soil, and 

distance to water could provide indicators of the hydrologic conditions in the area. All of these 

layers were hypothesized to play a role in the C. harti’s habitat requirements. Soil, geology, and 

land cover were originally in vector form and were converted to raster using ArcTools (polygon 

to raster). The model extent included six counties located in west central Georgia: Harris, Talbot, 

Upson, Pike, Meriwether, and Troup (Fig. 1). It is important that the model's extent is chosen to 

fit the potential range that the species could exist, otherwise the model has a high chance of 

overfitting inadequate locations (Elith et al., 2011). Across the globe there may be many areas 

that have the same environmental conditions required by a species. However, the range of the 

species is a key limiting factor that must be accounted for in the model. The occurrence data 

were configured in MS Excel™ to the specific structure required by the model. Data were 

compiled from research identifying 13 known locations reported in Keller et al, (2011, Fig. 1).  
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Table 1. Environmental data layers that were used in the Cambarus harti MaxEnt model, including 

their scale or resolution, description, and source. 

ET EC aia 

Environmental Description Source Unit Type Resolution or 

Layer 

  

Source scale 

  

  

  

Geology 28 geologic Georgia Nominal 1:250,000 

structures, Polygon Clearinghouse 

data 

Soils soil characteristics, Georgia Nominal 1:250,000 

Polygon data Clearinghouse 

Landcover 28 Landcover types USGS Nominal 30m 

across study site, 

raster data 

  

Slope Created from a USGS Ratio 10m 

digital elevation 

model, raster data 

  

Euclidian Distance Created from the USGS Interval 1:24,000/1:12,000 

to Water National Hydrology 

Dataset, depicts 

distance from water, 

line and polygon data 
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Figure 1. Known Cambarus harti locations (n=13) relative to the six counties in Georgia used in the 

MaxEnt model. 
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MaxEnt Analysis 

The C. harti model was developed using MaxEnt software [version 3.3.3k] (Phillips et al, 

2011). To help reduce potential sampling bias (Dudik et al., 2005, Phillips, 2008) 10,000 random 

background points were collected within a 2-km radius of each known location (Peterman et al, 

2013). The model was set so the probability output distribution produced would be logistic with 

potential maximum probability score equal to 1. MaxEnt was also set to create response curves 

for both the continuous (distance to water, and slope) and categorical (landcover, geology, and 

soil) data. MaxEnt was set to 5000 iterations of the model and to produce a receiver operating 

characteristic curve (ROC) including the area under the curve (AUC) value. The output of the 

model was set to ASCII format so that the resulting predictions could be imported into ArcMap. 

Because the model has the potential to include layers that are uninformative, jackknifing 

was used to evaluate individual layers to determine their importance in the model. The 

jackknifing algorithm runs the model 11 times removing layers while retaining others to 

determine the importance each layer has on the overall model. All input layers were retained in 

the final model (Table 1). ENMeval and ENMTools, packages in R (R Core Team, 2017), were used 

to ensure that MaxEnt doesn’t under or over fit the known distribution (Phillips & Dudik, 2008). 

Model validity was also evaluated by creating a null model calculated from 13 randomly placed 

occurrence points (Raes & Steege, 2007) using ENMtools (Warren et al., 2010). The null model 

was run in MaxEnt the same way my model was and the AUC curves were compared 

quantitatively when it was finished.  
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Field Validation: Random Locations 

Once the model was fully developed, its accuracy was accessed using field surveys for C. 

harti. Because the model generated a grid that predicted the probability that C. harti will be 

found in each cell, its accuracy could be validated by visiting various pixel locations and searching 

for C. harti. Thirty locations were chosen to be sampled and were split into three groups, 10 with 

high presence probability (80%-100%), 10 with medium presence probability (40%-60%), and 10 

with low presence probability (0%-20%). This technique, modeled after Rhoden et al (2017), 

facilitates comparison of model performance among levels. While every effort was made to 

select sampling locations at random, problems with public access required sampling choices to 

be semi-random. Locations were removed if the land was developed, permission wasn’t granted, 

or if the terrain was inappropriate (ex: lake bottom). Thirty semi-random locations were chosen 

from a fully random set of 100 locations (Fig. 2). 

A field sampling protocol was developed to evaluate model predictions. The area 

sampled in the field was matched to the cell size of the raster’s output (10mx10m). To account 

for the patchy distribution of C. harti populations (Hobbs, 1981), the 8 pixels surrounding the 

randomly selected sample location were also sampled (Fig. 3). Thus the total sampling area 

covered 9 cells and a total of 900m? at each of the 30 sample locations (270 pixels from the 

model). This intensive sampling protocol improved the chance of detecting C. harti and reduced 

the potential for false negatives (i.e. missed when present). 

It was important that field validation follow a consistent and effective protocol when 

searching for C. harti. For this study, each location (i.e. 9 cells) was examined for crayfish burrows 

for up to 3 hours. To navigate to the sample location, the latitude and longitude was extracted  
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from the centroid of the sample pixel using ArcMap; a Garmin GPSmap76CSx (<10m accuracy) 

was used in the field to navigate to the centroid of the sample location. At the centroid, a picture 

of the location was taken to accurately depict the habitat characteristics in that area. From this 

point, an open wheel tape measure was used to plot 8 different flags around the boundary of the 

sample site (compass directions; N, NE, E, SE, S, SW, W, NW). In order to ensure that the sampling 

matched all of the appropriate pixels from the model, | placed flags 13.71 meters N, S, E, W of 

the centroid and 20.12 meters (NE, SE, SW, NW) (Fig. 3). While walking these lines a rake was 

used to move debris and leaves aside exposing soil to aid in the visual search for crayfish 

chimneys and burrows. The flagged area was further assessed by walking through the entire 

sampling site searching for burrows to ensure equivalent sampling effort was allocated for each 

pixel. If no burrows/chimneys were found at the site, sampling ended prior to the three-hour 

max sampling period. At each site, | recorded the latitude and longitude, noted the time spent 

sampling, took digital images with a 12MP camera and measured any crayfish captured. All 

sample locations were treated similarly regardless of their probability ranking. A Chi-square 

analysis was run comparing the number of burrows dug at different probability value sites. 

When a potential burrow (a hole running vertical into the ground) was located, it was 

excavated slowly and carefully to ensure that the specimen was not harmed in any way. The hole 

was dug out using a shovel until groundwater started to fill the passageway, then a plunger pump 

was used to pump silt-filled water into the burrow in an attempt to force the crayfish to crawl 

out of the burrow. This approach drops the already low dissolved oxygen levels and, has been 

used successfully on two preliminary excavations of C. harti (Keller et al 2013).  
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Figure 2. Thirty semi-random locations where sampling of the Cambarus harti occurred. The 0%-20% 

probability locations are shown in blue, the 40%-60% in yellow and the 80%-100% in red. The 

background is an image from ESRI digital globe with an outline of the six counties used in this study. 
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Figure 3. A depiction of the sampling technique used for the field validation of the 30 random 

sites. The circle represents the starting point, the heavy dashed lines symbolize the path 

walked with a rake to set flags along the outside of the sampling area. The light dotted line 

was the area walked searching for burrows. 

Field Validation: Known Locations 

The second phase of the field validation test compared model predicted probabilities at 

sites where the crayfish existed with the surrounding areas where it was absent. This phase 

investigated potential sources of model error at the local scale by determining the accuracy of 

the model at known C. harti locations. Four locations were selected where the species was 

known to exist (Fig. 4). At each of the sites, | used a Trimble Geo 7X with 1-100cm accuracy to 

navigate to the known location, then searched the ground for potential burrows in an outward  
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spiral fashion. Once a burrow was located the latitude and longitude were collected. Because 

each pixel in the model was 10mX10m | made sure that the burrows were 10m apart. This 

approach assured that points would fall in different model pixels. If a burrow was less than 10m 

away this new burrow wasn’t plotted. 

Following the mapping of the known locations, | searched similar habitats without C. harti 

by selecting an area within 183-m of the known location. To reduce spatial bias, the absence 

locations were chosen to be equally proximal to the closest surface water source. Had these sites 

been selected with different distances that would have biased their probability distribution 

because the model is dependent on distance to water. The same outward spiraling search 

technique was used to confirm the absence of burrows. To ensure equivalent sampling effort, | 

searched an area corresponding to nine different model pixels (752m?). This resulted in 72 

plotted points, nine presence and nine absences for each of the 4 locations mapped. The latitude 

and longitude for the locations were collected and stored using the Trimble Geo 7X (accuracy = 

1m). 

Analysis of the field data was conducted using ArcMap 10.4. After entering the latitude 

and longitude for presence and shienics sites, the data were edited to include the location name 

(Chandler, Cartwright, FDR Institute, or Warm Springs) and status, (presence or absence of C. 

harti) for all 72 points. The MaxEnt model was uploaded to the ArcMap™ in ASCII form and 

converted to a raster using ArcTools (ASCII to Raster). In order to extract values at each pixel, 

the data in the table needed to be converted to an integer. The data were then converted from 

a decimal to a percent using raster calculator in ArcTools. The resulting data included many 

decimal places following the percent making it impossible for ArcMap™ to produce a raster data  
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table with so many unique values. ArcTools raster calculator was then used to convert the values 

to integers. The map was analyzed visually to ensure that each GPS point fell in a different model 

pixel. Extract by point tool was used to determine the MaxEnt model value at each GPS sample 

location. These data were exported to MS Excel™ for further analysis. 

A statistical comparison was conducted to determine if the model predictions (dependent 

variable) varied among presence and absence locations (independent variable #1) as well as the 

properties (independent variable #2) using a two-way ANOVA. Levene's Equality of Variances 

test was used to test the assumptions of homoscedasticity. A Tukey post-hoc pairwise 

comparison was used to compare differences between the properties. Each individual 

property’s presence and absence data were compared in SPSS using a difference of least squares 

means, comparing individual properties as well as comparisons between properties (IBM Corp, 

2017). The site labeled the FDR institute was omitted from the ANOVA and least squares means 

analysis, because all of the probability values were equal to 0%. 
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Figure 4. Four locations used for field validation of known locations, as well as the six labled counties 

used as the extent of this study. 

Results 

Presence data 

The presence data (N=14) for the model was based on historical surveys of C. harti (Fig. 

1, Keller et al, 2011). The 14 known locations had slopes that ranged from 0-2% grade and were 

located near surface water (max distance 75m). These locations were recorded mostly in 

hardwood forests where the underlying geology consisted of mica schist and mica schist/gneiss. 

Maxent analysis 

The MaxEnt model scored an overall AUC value of 0.957 (Fig. 5). The model weighed the 

environmental layers as follows: distance to water (35.4%), soil (29.1%), landcover (14.8%),  
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geology (14.3%), and slope (6.3%). A jackknife analysis showed that each layer played an 

important role in the overall model AUC (Fig. 6), so all layers were retained however landcover 

and slope had the lowest regularized gains. 

The results showed that probability of occurrence had a strong negative relationship with 

distance to water and slope (Fig. 7A). Distance to water drops to a probability of almost 0 beyond 

305m. Slope also drops to probabilities equal to 0 when slope is greater than 4% (Fig. 7B). 

Generally the species’ known locations were found on, mica schist (Fig. 7D) and hardwood forest 

(Fig. 7E). The model's spatial extent consisted of 6110 km? with probabilities of occurrence 

ranging from 0%-100% [(0%-10%) 4432km?, (10%-20%) 622km?, (20%-30%) 371km?, (30%-40%) 

214km?2, (40%-50%) 150km?, (50%-60%) 137km?, (60%-70%) 122km?, (70%-80%) 30km?, (80%- 

90%) 30km?, (90%-100%) 2km?] (Fig. 8). As the probability of occurrence increased the amount 

of predicted area decreased. Relative to the whole study area, high probability habitats (80%- 

100%) only encompassd 0.5% of the total area. This pattern is small but reflective of a niche 

species such as C. harti. 
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Figure 5. Effects of sample size on the model's predictive capability (i.e. % of known locations). 

The Cambarus harti model scored an AUC (area under the curve) of 0.957. The red line 

symbolizes an AUC value for the model while the black line represents a random predicted AUC 

value. 
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Figure 6. Jackknife of regularized AUC training gain for Cambarus harti model for each layer. A) 

distance to water, B) geology, C) landcover, D) slope, E) soil, and F) all layers combined. The 

Blue color symbolizes how the model’s AUC (area under the curve) will be affected with only 

that variable present and the turquoise shows AUC values with the removal of only that 

variable. 
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Figure 7. Species response for A) distance to water, B) slope, C) soil, D) geology, E) landcover. The 

Y axis symbolizes the probability of occurrence and the X axis depicts the environmental 

conditions (Appendix D). Negative values shown in A and B are model extrapolations but aren’t 

used in the underlying model.  
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Table 2. The environmental layers and their contribution to the MaxEnt model. The permutation 

importance is the layer’s correlation with the species while the percent contribution is the model 

assigned weight. 
es 

  

  

  

  

  

Variable Percent contribution Permutation importance 

Distance to Water 354 29.2 

Soil 29.1 27.1 

Landcover 14.8 11.8 

Geology 14.3 2.8 

Slope 6.3 29.1 

  

Field Validation: Random Locations 

Sampling of the three different thresholds, low, medium, and high, resulted in no 

confirmed captures of C. harti. Photos illustrated differences in the herbaceous community 

among the three different thresholds (Appendix D). Wetland plants (i.e. arrowhead plants and 

ferns) were present at many locations of high model predicted probabilities whereas where the 

probability dropped the wetland vegetation became rare. The average time spent sampling 

locations increased from 40.7 min at low probability sites to 49.3 min at high probability sites 

(Table 3). The extended sampling effort was due a greater number of potential burrows dug as 

the quality of the habitat increased (Chi-square, P < 0.01, Table 3). 
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Table 3: An overview of the field validation results from sampling. 

my 

Sampling Probability Average Time Spent Standard Deviation Potential Borrows 

  

  

  

Dug 

Low (0%-20%) 40.7min 3min 0 

Medium (40%-60%) 44.1min 6.8min 2 

High (80%-100%) 49.3min 10.4min 10 

  

Field Validation: Known Locations 

To assess the model’s predictive capacity at local scales, this study compared the 

probability scores at 3 sites with and without C. harti burrows. Counter to expectations model 

probabilities where crayfish weren’t observed ranked higher than where they were observed 

(Fig. 9). Absence sites showed 20% higher probability scores (ANOVA, P<0.001, Table 4) than 

sites with C. harti present (Fig. 9). FDR Institute was removed from the ANOVA analysis, because 

all values at that site scored 0% probability. There existed statistical difference among sites 

(ANOVA, P<0.001, Table 4). The largest difference existed between Cartwright and Warm Springs 

(P<0.001) and the smallest between Chandler and Warm Springs (Least Squares Means, P>0.14). 

There was a significant interaction term present in the data (ANOVA, P<0.001, Table 4), because 

there was no significant difference between presence and absence at the Chandler and 

Cartwright locations (Least Squares Means, P>0.57, Fig. 10) while there was significant difference 

at Warm Springs (Least Squares Means, P<0.001, Fig. 10).  
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Table 4. Two-way ANOVA comparing model probabilities between presence/absence and 

sampling location (i.e. property). 
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Factor Sum of Squares df Mean Square F p 
  

  

  

  

Presence 2078.2 2 2078.2 23.239<0.001 

Property 17662.3 2 8831.13 98.964 < 0.001 

Presence >% Property 807.1 2 403.57 4.523 0.016 

Residual 4283.3 48 89.24 
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Figure 9. Combined average predicted model percent probabilities from 3 sites with presence 

(n=36) and absence (n=36) of Cambarus harti. Error bars represent 95% confidence intervals. 

The reported P-value is based on a two-way ANOVA. 
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Figure 10. Predicted average model percent probabilities from A) Cartwright, B) Chandler, C) 

Warm Springs properties with and without Cambarus harti. Nine presence and nine absence 

probabilities were taken at each of the 3 sites. Error bars represent 95% confidence intervals. 

P-values were obtained from least squares means tests. 
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Discussion 

MaxEnt has proven to be a powerful tool for expanding the known distributions of 

endangered species (Williams et al., 2009). This modeling approach was used in the Maryland 

Coastal Plain to predict sites for the endangered dwarf wedgemussel (Campbell & Hilderbrand, 

2016) and endemic birds in temperate forests of Southern Chile (Moreno et al., 2011). MaxEnt 

has been successful when developing SDMs in cases where there are small sample sizes of only 

occurrence data (Hernandez et al., 2006, Wisz et al., 2008). Furthermore, it has already been 

used to model burrowing crayfish, Fallicambarus harpi and Procambarus reimeri in Arkansas 

(Rhoden et al., 2017). Given that C. harti was only known from 14 locations, MaxEnt was the 

appropriate species distribution model for this species. However, the results of this research 

appears to contradict previous publications regarding the effectiveness of MaxEnt for modeling 

rare burrowing crayfish (e.g. Rhoden et al., 2017). 

The first form of ground validation for this model was conducted across thirty random 

locations, covering nearly 270 different model pixels. This intensive sampling resulted in no new 

occurrences of C. harti, not even in the high probability sites. There are several possible 

explanations for these findings. Previous research done on C. harti as well as other endangered 

burrowers indicated the potential for detection problems (Hobbs 1981). Hobbs (1981) reported 

that these crayfish are so limited in their distribution that it would require extensive sampling of 

all microhabitats within one location to confirm their presence (Hobbs, 1981). Time constraints 

allowed a total sample area of 83.54 square meters at each of the 30 validation sites: 10 high 

probability (100%-80%), 10 medium probability (40%-60%), and 10 low probability (0%-20%).  
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There exists the possibility that crayfish burrows were located in close proximity but were 

undetected during visual surveys. At three sites (11, 18, 30) with probabilities above 50%, 

vegetation such as ferns and broadleaf arrowhead indicated wetland conditions and likely the 

presence of shallow ground water (Kane et al, 2002). These indicator species are common at 

sites where this species is known to occur (Hobbs, 1981). The concern that a crayfish site existed 

just beyond the sampling locations was confirmed when a newly discovered location 

(32.884913N, -84.69916 WV), was reported 180m upstream from ground truthing site 14 

(Appendix A). Not finding C. harti at any of the sites could indicate potential problems with the 

model fit (Tomarken & Waller, 2003) or the patchy distribution of rare species (Hobbs, 1981). 

There exists potential for inaccuracies in SDM models even with high AUC’s. MaxEnt 

determined the permutation of importance for each layer; distance to water, soil, geology, 

landcover, and slope (Table 2). From this the model compared how abundant these 

environmental conditions were across the landscape and determined the level of contribution 

that each layer would be weighted in the final model (Table 2). The model itself scored an AUC 

value of 0.957. This means that 95.7% of the time a random pixel chosen will score lower than 

one where the species is known to occur. This indicates that the habitat at the known locations 

were unique compared to the surrounding areas. Thus endangered endemic species with 

particular habitat requirements would be expected to have high AUCs (Rhoden et al., 2017). 

Researchers have identified problems with AUC values as indicators of model fit. A high AUC 

value could result from the model's limited capacity to estimate the habitat requirements 

(Warren & Seifert, 2011). This limited capacity could result from small sample sizes resulting in  
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a strong, but spurious correlation. Additionally, there exists potential for predicted absences and 

pseudo-absences (i.e. background points) to artificially inflate the AUC (Lobo et al., 2008). In this 

study, these potential pitfalls were taken into consideration by selecting adequate background 

points that were within 2km of each known location by following the recommendations of 

Peterman et al. (2013). 

Because questions remained unanswered regarding the quality of the model at the local 

scale, a second phase of ground truthing was implemented. This approach examined the model 

on a larger scale (i.e. finer resolution) by comparing model probabilities at 4 locations where 

burrows were known to occur versus nearby sites where no burrows existed. While a significant 

difference was found between the model probabilities of these two different areas; surprisingly, 

locations without C. harti outscored the locations with C. harti (Tables 4 and 5). These findings 

proved that the model was not able to accurately predict burrows at a fine resolution. The limited 

sample size C. harti is something that must be taken into consideration. Studies on SDM’s, such 

as the one by Hernandez (2006), indicate that MaxEnt preforms the best with limited sample 

sizes. However, at these small sample sizes the prediction success for the model could be as low 

as 20%. Wisz et.al (2008) also reported that MaxEnt preforms the best with limited sample sizes 

however at low sample sizes there exists a lower chance of prediction success. 

One possible explanation for the model's poor performance, is that the known locations 

used for it weren’t accurate. Site inaccuracies have been a problem for studies that extract 

occurrences from the literature (Newbold, 2010). However, all the sites used in the present study 

had been recently confirmed (Keller et al, 2011). This source of error seems unlikely to explain 

this model's poor performance.  
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Another source of error in the model could be traced to the environmental layers used to 

make the model itself. One study addressed the concern about standards for data collection and 

called for rigorous quality control plan for spatial data (Cayuela et al., 2009). Standards should 

be set to ensure that collection technique and data reporting form help ensure an adequate level 

of precision. Other Inaccuracies can cause the model to make false predictions particularly when 

there is lack of data and/or gaps in the existing data (Araujo & Guisan, 2006, Guisan & Thuiller, 

2005). Gaps in data layers and data quality may have contributed to potential model inaccuracies 

identified by ground truthing in this study. 

To determine if data layers contributed to the model prediction errors, the layers were 

examined visually in ArcMap. Locations where the species was known to exist were compared 

to each of the environmental layers and cross referenced with field observations. At all locations, 

it was observed that surface water from the USGS National Hydrology Dataset (NHD) showed 

inaccuracies (Appendix B, Imagel-4). For example, at the Warm Springs property the NHD is 

missing a spring upwelling that forms a small stream (Appendix B, image 3). The known C. harti 

location was located in an area adjacent to this spring that was not identified in the NHD. In 

another case, the FDR Institute site scored a probability value of 0%, because the environmental 

layers inaccurately depicted the hydrography of the location (Appendix B, Image 4). At that site, 

there are crayfish living on both sides of a small spring-fed stream. According to the National 

Hydrology Dataset this stream, doesn’t exist or hasn't been recorded. These errors suggest that 

the hydrography dataset contained important inaccuracies. Unfortunately, those data sets were 

used to formulate the model. Errors associated with missing or misplaced streams, contributed 

to an inaccurate final MaxEnt model.  
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In the future, the stream data should be revised and corrected especially if it will be used 

for another SDM. The model is only as good as the data used to create it. When data sets are 

lacking or inaccurate, the model will be unable create reliable predictions. 

For burrowing crayfish models, an environmental layer that could improve model 

prediction inaccuracies in the NHD layer would be a layer depicting shallow groundwater. To 

date, there exists no groundwater layer for this area in Georgia. Considering that C. harti as well 

as other burrowing crayfish rely on groundwater connectivity, a layer like this would help create 

a more accurate species distribution model. Rhoden et al (2017) also lacked a groundwater layer, 

however they constructed a simple groundwater indicator. Their ground truth sampling did find 

the target species. However, they failed to properly test their model because they chose to 

sample only in roadside ditches where they knew water was present. By only sampling in ditches, 

the known preferred habitat of their crayfish, they may have biased the ground truthing and their 

estimate of the model’s accuracy. In order to accurately ground truth the model the technique 

would need to be revised and sample the entire model landscape, rather than a selected subset 

of locations more likely to sustain the species. 

Conclusion 

SDM models have proven effective when modeling rare species, including burrowing 

crayfish (Rhoden et al., 2017). The quality of environmental layers and their relevance to the 

species being modeled, controls the accuracy of the model predictions. In this study the 

predicted distribution consisted of 6110km? with probabilities of occurrence ranging from: 0%-  
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100%. The resulting MaxEnt model showed significant inaccuracies in its prediction. One 

identified problem was that the environmental layers used in the model contained errors. For 

example analysis revealed that the USGS National Hydrology Dataset was missing springs and 

small streams, critical habitat for C. harti. These problems combined with the limited number of 

known locations contributed to the model’s inaccurate predictions. Furthermore, critical 

environmental layers, such as surficial groundwater, does not exist for this area. These data are 

needed to accurately depict C. harti habitat. Until the data for the environmental layers are more 

fully developed and properly ground truthed, the value of SDM’s for modeling rare burrowing 

crayfish will be limited. 
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Semi-rendom sample location 14 is plotted on a map overlay along with a realitivly new location 

discovered by Chester Figiel. The newly discovered location was not far from the random sample that 

resulted in a non-presence finding. 
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APPENDIX B 

  
Image 1. The Cartwright property with the NHD hydrology layer imposed on an image (blue Line). There 

is a stream to the east of this point (red Line) however the NHD map didn’t include the smaller creek.   

 



www.manaraa.com
  

38 

  
kr ¢ : s ¢ Be oh feet i i hin LE pn Ws bi cere he SW ER ONS : 

Image 2. The Chandler property with the NHD hydrology layer imposed on an image (blue line). The 

| stream is drawn to the NE of my sample location however the streams true location (red line) runs 

parellel to my sample site before taking a bend and entering the easment. 

SS ta RE Et a RA] 

EE : 

Image 3. The Warm Springs property with the NHD hydrology layer imposed o age (blue Line). 

The image depicts a stream to the east of the sample location however there is also a spring head (red 

dot) located at the sampling point and water from it flows towards the stream (red outline) before 

infiltrating into the ground.   
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Image 4. The FDR Institute property with the NHD hydrology layer imposed on an image ( 

> 

blue line). 

  

This image doesn’t depict any water at this location, while sampling the point on the map a stream was 

evident (red line). The stream ran from up the hill towards my point and then under the road through a 

constructed stream crossing culvert. 
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Appendix C 

Difference of Least Squares Means 

Property Presence Property Presence Standard DF T P 

Error Value Value 

Cartwright Chandler 3.1488 48 7.96 <.0001 

Cartwright Warm _Springs 3.1488 48 14.03 <.0001 

Chandler Warm_Springs 3.1488 48 6.07 <.0001 

Absent Present 2.5710 48 4.833 <0001 

Cartwright Absent Cartwright Present 4.4531 48 1.47 0.6832 

Cartwright Absent Chandler Absent 4.4531 483 5.54 <.0001 

Cartwright Absent Chandler Present 4.4531 482 7.19 <.0001 

Cartwright Absent Warm _Springs Absent 4.4531 48 83.03 <.0001 

Cartwright Absent Warm _Springs Present 4.4531 48 13.27 <.0001 

Cartwright Present Chandler Absent 4.4531 48 4.07 0.0023 

Cartwright Present Chandler Present 4.4531 42 571 <=0001 

Cartwright Present Warm Springs Absent 4.4531 48 B56 =.0001 

Cartwright Present Warm Springs Present 4.45331 48 11.80 <.0001 

Chandler Absent Chandler Present 4.4531 48 1.65 Q5726 

Chandler Absent Warm_Springs Absent 4.4531 42 2.50 0.1459 

Chandler Absent Warm_Springs Present 4.4531 42 7.73 «<.000] 

Chandler Present Warm Springs Absent 4.4531 48 0.85 0.9566 

Chandler Present Warm _Springs Present 4.4531 48 6.09 <.0001 

Warm Springs Absent Warm Springs Present 4.4531 48 5.24 <.0001 
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Response curve tables 

Table 1. Geology Dataset Attributes 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

Value | Abbreviation | Age Rock Type 1 | Rock Type 2 

1 fgl Precambrian-Paleozoic | Biotite Gneiss | Felsic Gneiss 

2 bgl Precambrian-Paleozoic | Biotite Gneiss | N/A 

3 fg3 Precambrian-Paleozoic | Biotite Gneiss | Mica Schist 

4 pms3a Precambrian-Paleozoic | Mica Schist Gneiss 

5 mm3 Precambrian-Paleozoic | Gneiss Amphibolite 

6 fg4 Precambrian-Paleozoic | Biotite Gneiss | Amphibolite 

7 gril Precambrian-Paleozoic | Granite N/A 

8 pmsl Precambrian-Paleozoic | Mica schist N/A 

9 ggb Precambrian-Paleozoic | Granitic Granite 

Gneiss 

10 ggl Precambrian-Paleozoic | Granitic N/A 

Gneiss 

11 paz Precambrian-Paleozoic | Schist N/A 

12 mm1 Precambrian-Paleozoic | Amphibolite | N/A 

13 mm?2 Precambrian-Paleozoic | Gneiss N/A 

14 ql Precambrian-Paleozoic | Quartzite N/A 

15 water Holocene Water N/A 

16 cl Age not given Mylonite N/A 

17 gla Precambrian-Paleozoic | Quartzite Mica schist             

41 
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18 gr4 Precambrian-Paleozoic | Charnockite | N/A 

19 pal Precambrian-Paleozoic | Schist N/A 

20 pms3 Precambrian-Paleozoic | Mica schist Gneiss 

21 mm4 Precambrian-Paleozoic | Gneiss Amphibolite 

22 bg2 Age not given Biotite Gneiss | Amphibolite 

23 c2 Age not given Mylonite N/A 

24 Kt Cretaceous Sand Clay or mud 

25 Ke Cretaceous Clay or mud | Sand 

26 Kb Cretaceous Clay or mud | Sand 

27 Kc Cretaceous Sand Clay or mud 

28 Qal Quaternary Alluvium Alluvial terrace 

Table 2. Landcover Dataset Attributes 

Value | Landcover Type Description 

7 Beach Open sand, sandbars, mud and some sand dunes - 

natural environments as well as exposed sand from 

dredging and other activities. Mainly in coastal areas, but 

also inland, especially along the banks of reservoirs. 

11 Open Water Lakes, rivers, ponds, ocean, industrial water and 

aquaculture. 

18 Transportation Roads, railroads, airports and runways. 

20 Utility Swaths Open swaths maintained for transmission lines.       
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22 Low Intensity Urban - Low intensity urban areas with little or no tree canopy. 

Nonforested 

24 High Intensity Urban Commercial/industrial and multi-family residential 

areas. 

31 Clearcut - Sparse Recent clearcuts, sparse vegetation and other early 

Vegetation successional areas. 

33 Quarries, Strip Mines Exposed rock and soil from industrial uses, gravel pits 

and landfills. 

7 Parks, Recreation Cemeteries, playing fields, campus-like institutions, 

parks and schools. 

73 Golf Course Golf courses. 

80 Pasture, Hay Pasture and non-tilled grasses. 

83 Row Crop Row crops, orchards, vineyards, groves and horticultural 

businesses. 

201 | Forested Urban - Low intensity urban areas containing mainly deciduous 

Deciduous trees. 

202 | Forested Urban - Low intensity urban areas containing mainly evergreen 

Evergreen trees. 

203 Forested Urban - Mixed Low intensity urban areas containing mixed deciduous 

and evergreen trees. 

412 Hardwood Forest Mesic to moderately mesic forests of the lower Piedmont 

and Coastal Plain. Includes non-wetland floodplain 

forests of yellow-poplar and sweetgum, ravines of oaks 

and American beech, and many upland oak-hickory 

stands. 

413 Xeric Hardwood Dry hardwood forests found throughout the state,     although most common in the mountain regions, and 

progressively more rare southward. Includes areas 

dominated by southern red oak, scarlet oak, post oak 

and blackjack oak. 
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422 Open Loblolly-Shortleaf 

Pine 

Only mapped in the Piedmont. Includes older, fairly open 

stands that may be almost savanna-like in appearance. 

  

432 Xeric Mixed Pine- 

Hardwood 

Dry mixed forests found throughout the state, although 

most common in the mountain regions and 

progressively more rare southward. Includes areas 

dominated by a mix of pines (most frequently shortleaf 

or Virginia in the mountains, and shortleaf or longleaf 

elsewhere) and hardwood species such as southern red 

oak, scarlet oak, post oak and blackjack oak. 

  

434 Mixed Pine-Hardwood Mesic to moderately dry forests of mixed deciduous and 

evergreen species found throughout the state at lower 

elevations. May include areas dominated by sweetgum, 

yellow-poplar, various oak species and loblolly or 

shortleaf pine. 

  

440 Loblolly-Shortleaf Pine Found from the upper Coastal Plain northward (rare in 

the Blue Ridge except at the lowest elevations). Includes 

many stands heavily managed for silviculture as well as 

areas regenerating from old field conditions. 

  

512 Sandhill Areas of scrub vegetation on deep, sandy soils on the 

Coastal Plain, especially near the Fall Line and along 

larger streams. May be dominated by turkey oak, 

blackjack oak, live oak, holly and longleaf pine. 

  

620 Longleaf Pine Open, savanna-type stand. Heavily managed plantations 

would likely be classed with 440 or 441. Most common 

on the lower Coastal Plain, although found up to the 

lower Piedmont and historically in the Ridge and Valley. 

  

890 Cypress-Gum Swamp Regularly flooded swamp forests mainly found on the 

Coastal Plain. May include either riparian or 

depressional wetlands. Usually dominated by pond or 

baldcypress and/or tupelo gum. 

    900   Bottomland Hardwood   Less frequently flooded wetland forests found 

throughout the state, but most common on the Coastal 

Plain. To the north, may be dominated by sweetgum, 

elms and red maple. To the south, wetland oaks (water 

oak, willow oak, overcup oak, swamp chestnut oak), 

black gum, and even spruce pine become more common.     
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930 | Freshwater Marsh Emergent freshwater wetlands found throughout the 

state. May be dominated by grasses or sedges. 

  

980 | Shrub Wetland Closed canopy, low stature woody wetland. Found 

throughout the state, although most common on the 

Coastal Plain. May be result of clearcutting of wetland 

forests. Frequently includes willows, alders and red 

  

maple. 

990 | Evergreen Forested Restricted to the Coastal Plain. Includes forests 

Wetland dominated by bay species, wet pine forests (typically 

slash or pond pine) or Atlantic white cedar.       
    

Table 3. Soil Dataset Attributes 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Value | AWC | CLAY | KFFACT | OM | PERM | HYGRP | DRAIN | LL IFHYDRIC | AFLDFREQ 

0 0.11 | 35.6 {0.23 0.2 1127 |2 3 44.7 | 0 3.9 

1 0.11 [351 (0.22 0.3 {1956 [2 3 43.2 | 0 3.7 

2 0.12 {32.9 (0.26 0.3 12 2.1 3.2 39.7 | 0 3.8 

3 01 [-0.1 |-0.1 - -0.1 -0.1 =0.1 -0.1 [-0.1 -0.1 

0.1 

4 0.13 [19 0.22 0.7 {3.11 | 26 4.2 28.1. 10.1 2.2 

5 0.12 132.9 10.26 03 | 2 2.1 3.2 39.7 [0 3.3 

6 0.11 {356 {0.23 0.2 (127 |2 3 44.7 | 0 3.9 

7 0.12 {32.9 {0.25 0.3 12 2.1 3.2 39.7 | 0 3.8 

8 0.13 | 19 0.22 $7. 13.11 | 26 4.2 23.1 [0.1 2.2 

9 0.12 [32.9 10.26 03 (2 2.1 3.2 39.7 0 3.3 

10 0.12 {32.9 [0.26 0.312 2.5% 3.2 39.7 | 0 3.8 

14 0.12 {32.9 |0.26 0.3 |2 2.1 3.2 39.7 {| O 3.8 

12 0.13 | 19 0.22 0.7 7/331 (2.6 4.2 23.1 10.1 2.2                           
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13 0.11 {35.1 [0.22 03 1196 2 3 43.2 3.7 

14 0.12 [32.9 (0.26 0.3 2 2.1 3.2 39.7 3.8 

15 0.12 132.9 [0.25 0.3 2 2.1 3.2 39.7 3.3 

16 01 {23.1 (03 06 1256 [3.1 3 30.6 4 

17 0.1 23.1.103 06 256 {3.1 3 30.6 4 

18 0.09 | 31.8 [0.18 0.2 1157 (23 3 41.7 3.8 

19 0.12 1329 10.26 03 [2 2.1 3.2 39.7 3.8 

20 0.12 {329 |0.26 0.3 12 2.1 3:2 39.7 3.8 

21 012 £329 |0.26 03 {2 2.1 3.2 39.7 3.8 

22 01 /1231.103 06256 (3.1 3 30.6 4 

23 0.12 [32.9 0.26 8.3 (2 2.1 3.2 39.7 3.8 

24 0.1. (23.1 (0.3 06 [256 (3.1 3 30.6 4 

25 0.11 1356 | 0.23 02 (127 |2 3 44.7 3:9 

26 0.1 23.1 [0.3 06 12.56 |3.1 3 30.5 4 

27 0.12 {329 [0.26 8.3 {2 2.1 3.2 39.7 3.8 

28 0.42 {329 (0.26 0.3 (2 2.1 3.2 39.7 3.8 

29 012 (329 (0.26 0.3 {2 2.1 3.2 39.7 3.8 

30 0.1 23.1 | 03 06 1256 |3.1 3 30.6 4 

31 0.12 {329 (0.25 0.3 12 2.1 3.2 39.7 3.8 

32 0.1 23.1 0.3 06 1256 |3.1 3 30.6 4 

33 0.11 {358 (0.23 0.2 11.27 (2 3 44.7 3.9 

34 0.09 {31.8 [0.13 0.2 | 157 [23 3 41.7 3.8 

35 0.1 231 (03 05 (256 [3.1 3 30.6 4                       
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36 0.12 ¥ 32.9 {0.25 03 {2 2.1 3.2 39.7 3.8 

37 0.21 [35.6 {0.23 0.2 127 [2 3 44.7 3.9 

38 0.08 [28.9 10.14 0.2 $1.22 | 2.7 3.1 39.6 3.7 

39 0.12 {329 |025 0.3 {2 2.1 3.2 39.7 3.8 

40 0.141 1356 (0.23 0.2 (1.27 |2 3 44.7 3.9 

41 0.12 1329 | 0.26 03 [2 2.1 3.2 39.7 3.8 

42 0.12 {329 10.28 0.3 | 2 2.1 3.2 29.7 3.8 

43 0.11 [35.6 (0.23 0.2 11.27 12 3 44.7 3.9 

44 - 10.11 135.6 [0.23 0.2 1.1.27 [2 3 44.7 3.9 

45 0.11 (35.6 {0.23 0.2 11.27 |2 3 44.7 2.9 

46 0.11 {35.6 10.23 0.2 [1.27 |2 3 44.7 3.9 

47 0.12 {329 (0.25 0.3 | 2 2.1 3.2 39.7 3.3 

48 0.11 [356 [0.23 0.2 | 1.27 (2 3 44.7 3.8 

49 0.12 {32.9 (0.26 0.3 2 2.1 3.2 39.7 3.8 

50 0.11 1356 [0.23 0.2 {1.27 [2 3 44.7 3.9 

51 0.11 {356 | 0.23 8.2 127 [2 3 44.7 3.9 

52 0.11 | 356 {0.23 0.2.(1127 [2 3 44.7 3.9 

53 008 (289 |0,14 0.21122 |2.7 3.1 39.6 3.7 

54 0:11 1356 | 0.23 02-1127 [2 3 44.7 3.9 

55 0.1 23.1 [03 061255 [31 3 30.6 4 

56 0.11 1356 | 0.23 0.2 +127 (2 3 44.7 3.9 

57 0.11 1356 [023 0.2 (127 [2 3 44.7 3.9 

58 0.11 1356 [0.23 8.2 [1.27 [2 3 44.7 3.9                       
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59 0.1 [23.1 10.3 B6.[256 |3.1 3 30.7 | 0 4 

60 0.11 135.6 |0.23 0.2 (127 (2 3 44.7 | 0 3.9 

61 0.11 (35.6 1.0.23 0.2 11.27 [2 3 44.7 | 0 3.9 

62 0.11 {35.6 (0.23 0.2127 |2 3 44.7 | 0 3.9 

63 0.11 (35.6 {0.23 0.2.11.27 | 2 3 44.7 | 0 3.9 

64 0.11 {356 {0.23 0,2 {127 |2 3 44.7 | 0 3.9 

65 0.11 (356 {0.23 0.2 {1.27 | 2 3 44.7 | 0 3.9 

66 0.11 {356 10.23 0.2 [1.27 [2 3 44.7 | 0 3.9 

67 0.1 {23.1 [03 $6256 |3.1 3 30.6 | 0 A 

68 0.09 {37.6 {0.15 0.2 11.06 (3.2 3.6 525 {0 3.9 

69 0.09 [37.6 0.15 0.21106 |3.2 3.6 525 | 0 3.9 

70 0.11 {356 | 0.23 92 (127 |2 3 44.7 | 0 3.9 

71 0.11 356 | 0.23 0.2 11.27 [2 3 44.7 | 0 3:9 

72 0.09 [376 |0.15 0.2 [106 [3.2 3.5 525 | 0 3.9 

73 0.12 {329 10.25 0.3 (2 2.2 3.2 39.7. 70 3.8 

74 0.09 {37.6 |0.15 0.2 [1.056 [3.2 3.6 525 | 0 3.9 

75 0.12 ©1329 0.26 03 (2 2.1 3.2 39.7 | O 3.3 

76 0.111356 10.23 8.2 £1.27 [2 3 44.7 | 0 32.9 

77 0.09 {37.6 }|0.15 0.2 {105.132 3.6 525.0 3.9 

78 0.12 1329 10.26 0.3 |2 2.1 3.2 39.7 {0 3.8 

79 0.11 1262 0.22 0.2 [2.76 [2.1 3 33.2 0 3.9 

80 0.12 1329 10.26 03 {2 2.1 2.2 39.7 | 0 3.8 

81 009 117.8 [0.2 04 [548 |2.2 2.9 30 0.1 3.8                       
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82 0:12 [329 [0.26 0.3 1.2 2.1 3.2 39.7 | O 3.8 

83 0.12 [329 (0.26 03 12 2.1 3.2 39.7 |0 3.8 

84 0.12 {329 [0.26 0.3 2 2.1 3.2 39.7 8 3.3 

85 0.08 | 154 | 0.17 04 {6.837 [1.9 2.4 29.7 (0 3.9 

86 0.21 [35.6 {0.23 0.2 {1.27 (2 3 44.7 | 0 3.9 

87 0,11 (35.6 | 0.23 0.2 {1.27 [2 3 44.7 | 0 3.9 

88 0.11 [35.6 {0.23 0.2 11.27 {2 3 44.7 | 0 3.9 

89 0.22 {329 1026 03 [2 2.1 3.2 39.7 | 0 3.8 

90 0.12 1329 10.26 0.3.2 2.1 3.2 39.7. 10 3.8 

91 0.12 | 22.9 [0.26 03 |2 2.1 2.2 39.7. (0 3.8 

92 0.09 {17.8 (0.2 04 | 548 |2.2 2.9 30 0.1 3.8 

93 0.12 {32.9 {0.25 03 [2 2.1 3.2 38.7 10 3.8 

94 009 (178 10.2 04 | 548 |2.2 2.9 30 0.1 3.3 

95 0.11 [26.2 | 0.22 02 (276 2.1 3 33.2 [0 3.9 

96 008 (154 (0.17 04 [687 [1.9 2.4 29.7 (0 3.9 

97 0.1 17.4 | 0.18 05 {548 [1.7 2.8 30.2 |0 3.8                           
AWC = available water capacity (inches/inch) 

CLAY = clay content of soil (% of soil < 2mm in size) 

KFFACT = soil erodibility f-factor 

OM = organic matter content (% by weight) 

PERM = permeability rates (inches/hour) 

HYGRP = soil index variables (1=well drained to 4=poorly drained) 

DRAIN = soil index variable (1=well drained to 7=poorly drained) 

LL = liquid limit of the soil (%moisture by weight) 

IFHYDRIC = hydric soil indicator (1 if hydric) 

AFLDFREQ = annual flood frequency (1 = frequent (>50% chance) 

2 = occasional (5-50% chance), 3 = rare (<5% chance) 
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Appendix E 

This is a compliation of many different site locations. Each set of pictures includes a location map 

depicting the area to help give reference followed by an image from the site that was taken in the 

centroid of my sample location. The series of images are split up into three different groups based on 

the probability of occurrence at these locations (high, medium, low). The images depict a change in the 

groundcover as you move from high probablity to low. Within the higher probablities you will see 

groundcover that denotes shallow groundwater while the low probablities lack any cover and if there is 

some it doesn’t indicate the presence of groundwater. 
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Sample Location 8 
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Appendix F 

List of locations for all reandom sampled locations along with there probablity ranking. 
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probability latitude longitude 

80-100 32.98941562 -84.47376288 
80-100 32.85426801 -84.64408113 
80-100 32.94832094 -84.46982345 
80-100 33.00053076 -84.46486708 
80-100 32.88720225 -84.69877335 
80-100 32.96729112 -84.5024646 
80-100 32.96441528 -84.54895304 
80-100 32.82394499 -84.86487466 
80-100 32.92182338 -84.65690954 
80-100 32.95769792 -84.57873974 
40-60 33.18857895 -84.6754586 
40-60 33.17348199 -84.30272959 
40-60 33.05023915 -84.32289425 
40-60 32.83064132 -84.84297827 
40-60 32.93013346 -85.1213369 
40-60 32.77126974 -84.69577841 . 
40-60 32.79563937 -84.57422811 
40-60 32.7475528 -85.02140014 
40-60 33.01889219 -85.04892564 
40-60 32.99352661 -85.17156258 
0-20 32.62275657 -84.70609441 
0-20 32.65278022 -84.54150938 
0-20 32.90541716 -84.36474301 
0-20 32.98247257 -84.30420223 
0-20 33.04760524 -84.70597371 
0-20 32.67724191 -84.9253337 
0-20 32.78258801 -84.40412751 
0-20 32.92483811 -84.7709989 
0-20 33.04640909 -84.51551196 
0-20 32.91935118 -85.16524799         
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